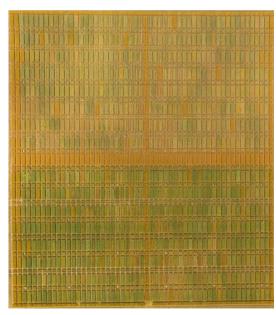


Developing Genetic Strategies for UK Drought Tolerance

WGIN Stakeholders Meeting 3rd March 2021

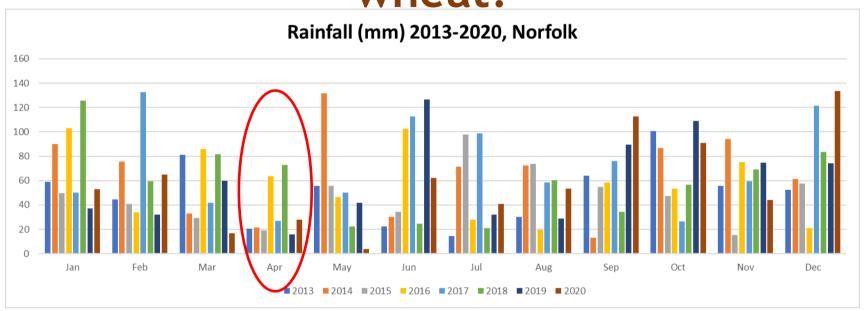
Clare Lister and Simon Griffiths

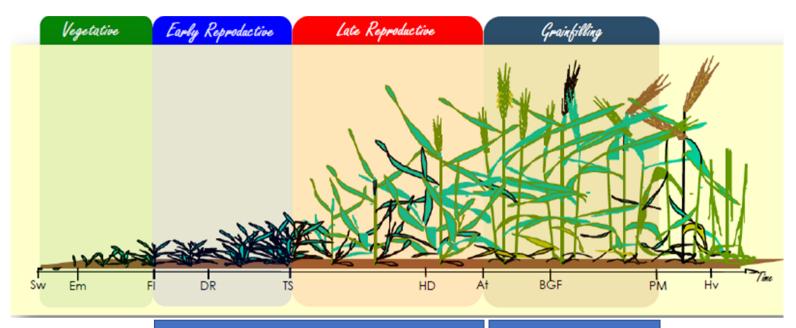


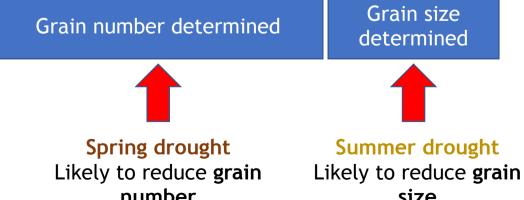
Introducing the Paragon x Garcia population

- The Paragon x Garcia Recombinant Inbred Line (RIL) population produced in WGIN to target UK drought
- Paragon UK spring wheat
- Garcia grown in southern France and northern Spain, adapted to drought stress
- Four years of drought trials in Norfolk.

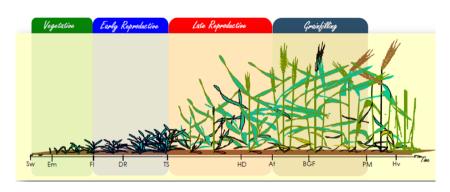
NI (Not Irrigated)


IR (Irrigated)


- Recent UK trend for low spring rainfall, especially in April
- In all years, except 2016 and 2018, total April rainfall was below 25mm
- April drought usually coincides with early to mid reproductive development



When is drought a problem for wheat?



Wheat coping strategies for UK drought?

Direct protection?

- e.g. reducing floret abortion during late reproductive phase
- e.g. maintaining grain size

Protection at early stage?

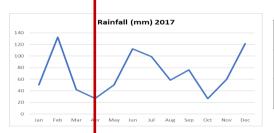
 e.g. increasing tiller number so grains/spike reduction affects yield less

Compensate later?

 e.g. enhanced use of summer rain to increase size of lower number of grains

Paragon x Garcia Experimental Years

Field 3 - Very Sand


Field 1 - Sandy Loa

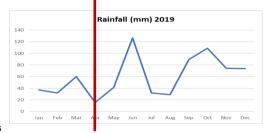
YLDNI_DT2016	YLDIR_DT2016
5.53	5.51
	-0.02

2016

Wet all season Field 1 - Sandy Loa
No irrigation benefit

YLDNI_DT2017	YLDIR_DT2017
4.46	5.13
	0.67

2017


Dry April, following wet winter Lowest yield year Field 2 - Very Sand Strongest % irrigation benefit

YLDNI_DT2018	YLDIR_DT2018
5.42	6.24
	0.82

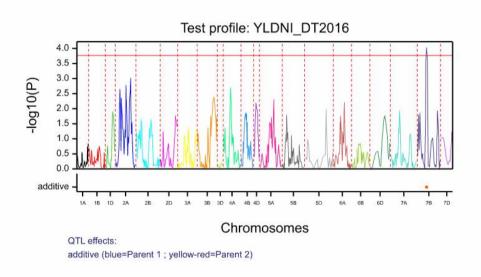
2018

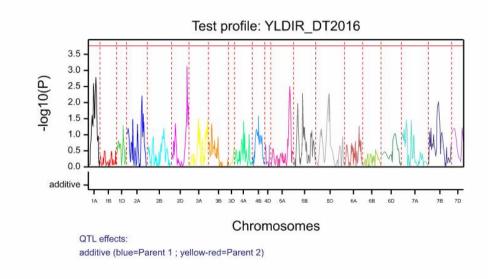
Very wet winter and spring Very dry summer. Biggest yield benefit

YLDNI_DT2019	YLDIR_DT2019
5.18	5.21
	0.03

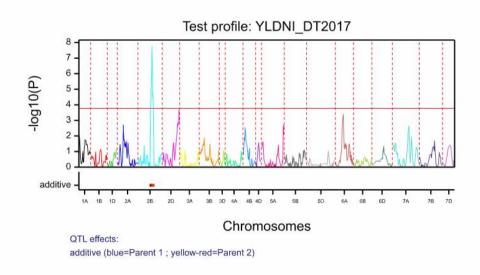
2019

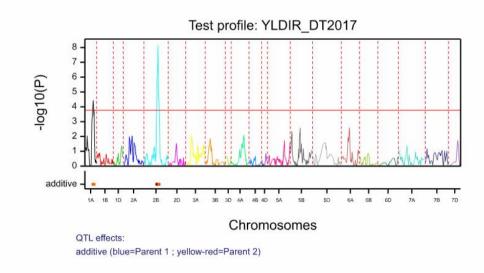
Dry winter and April, wet summer No irrigation benefit





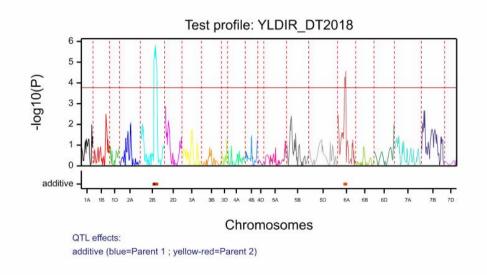
But not in 2016...


NOT IRRIGATED (NI)



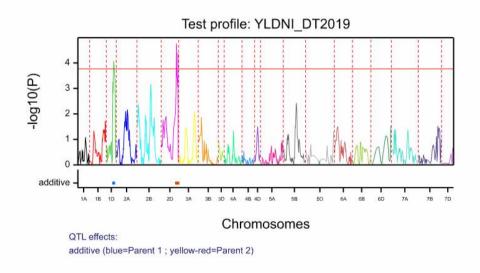
2017 - 2B yield QTL in NI and IR Garcia alleles increased yield

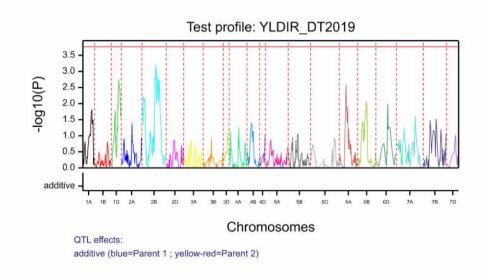
NOT IRRIGATED (NI)



2018 - 2B yield QTL in NI and IR Garcia alleles increased yield

NOT IRRIGATED (NI)





... or in 2019

NOT IRRIGATED (NI)

YLDNI_DT20 17	Locus #	Locus Name	Linkage group	Position (cM)	-log10(P)	
	173	wsnp_JD_c47318_32176833	2B	142.1	7.175	633 Mb
					High value allele	
					Garcia	

Linkage

Position

		18	#	Locus Name	group	(cM)	-log lo(F)		
•	The 2B Q		176	Excalibur_rep_c108662_13	2B	154.26	6.85	682 Mb	strong
	irrigation						High value allele		
	Howovor						Garcia		

- However, the QIL was not in specific in those seasons.
- Maybe this QTL is involved in temperature response (+/irrigation)?
- Major effect high LOD scores

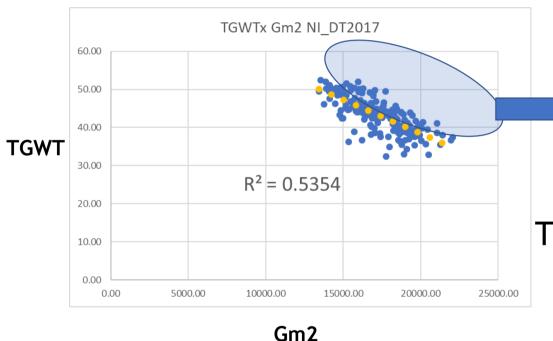
YLDNI DT20 Locus

Potentially a good target for marker assisted selection in breeding.

Which yield components are effected by the 2B QTL?

- This is important in understanding the mechanism of yield increase.
- But no significant QTL detected for grain size (TGWT) or number (Gm2)
- Maybe because both traits are increasing in Garcia?
- ... and individually they are relatively weak effects?

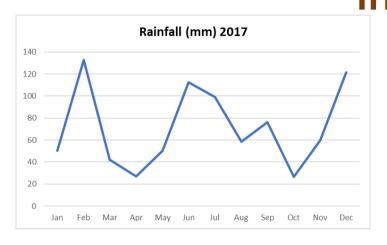
• xwComparing the allelic phenotypic means at the 2B YLD QTL peak


·	., 010_011, 000,			(0 0 1 T 1 t) 0 1 t				
All AND SUPPLIA	YLDNI_DT2017	YLDIR_DT2017	3	TGWTNI_DT2017	TGWTIR_DT2017	ig	Gm2NI_D2017	Gm2IR_D2017
Paragon	4.31	4.93		42.94	41.45		16902.75	20037.01
Garcia	4.56	5.28		43.81	43.20		17464.78	20544.69
Effect	0.25 kg	0.34 kg		0.87g	1.74g		562.03	507.68

Unexpected effect of Garcia 2B YLD QTL

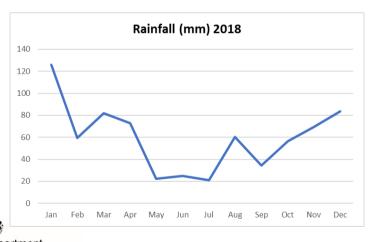
These lines have relatively high grain number and grain size

The Garcia 2B YLD effect therefore defies the usual *negative* correlation between grain size and number



for Environment

Why would this 2B Garcia QTL increase yield in 2017 and 2018?



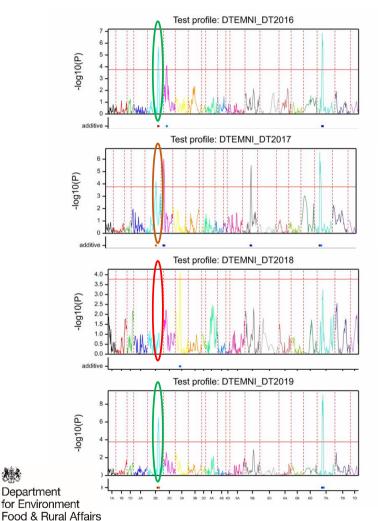
Dry Spring versus Dry Summer

2017

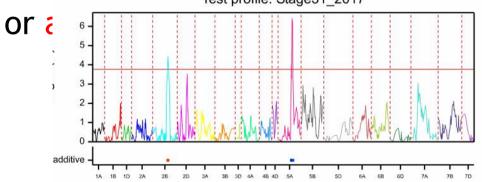
Increases grain number in spring drought then

Increases grain size in the summer rain

2018


Wet spring does not limit grain number Maintains/increases grain size in dry summer

- Dual effect of the 2B Garcia allele is beneficial
 - in both scenarios; dry spring and dry



What else maps to this 2B locus?

- Growth Stage 31 is onset of stem extension
- 2B QTL detected at GS31
- Heading date QTL at same location as yield QTL
- Garcia carries the late heading allele
- In the years that the yield QTL is detected, 2017 and 2018 heading date OTL is weak

So what is the 2B Garcia QTL doing?

- Could the early slowing of development in April reduce drought impact?
- How could these developmental changes influence subsequent grain size?
- Maybe grain filling can be prolonged due to later flowering?
- Heading date QTL genetically linked but could be physiologically distinct from the yield effect increases yield in drought

conditions
by adjusting the timing of spike develop

by adjusting the timing of spike development

What next?

- 2B Garcia allele was nominated for the DFW Breeders Toolkit
- Lines identified with Garcia or Paragon at locus
- NILs in 1 m2 plots for seed bulking
- Yield trial autumn 2021 which will have the higher yield?
- Will there be a phenology effects: GS31, booting, heading, grain fill?
- Will selection for 2B Garcia alleles increase drought resilience of UK wheat??

Collaboration with RothRes

- Four years of thermal measurements of drought trials at JIC
- PxG RILs from drought trial currently under Scanalyzer

Acknowledgments

Griffiths Group Simon Griffiths Simon Orford Monika Chhetry Luzie Wingen JIC Field Experimentation
Cathy Mumford
Chris Allen
Rich Samworth
Kevin Crane
Stephen Johnson
Luke Dewing
Becca Lee
Darryl Playford

Rothamsted Research
Malcolm Hawkesford
Andrew Riche
March Castle
Nicolas Virlet
Pouria Sadeghi-Tehran

Adam Michalski (Poland)

